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We give two different, statistically consistent definitions of the length l of a prime knot tied into a polymer
ring. In the good solvent regime the polymer is modeled by a self avoiding polygon of N steps on cubic lattice
and l is the number of steps over which the knot “spreads” in a given configuration. An analysis of extensive
Monte Carlo data in equilibrium shows that the probability distribution of l as a function of N obeys a scaling
of the form p�l ,N�� l−cf�l /ND�, with c�1.25 and D�1. Both D and c could be independent of knot type. As
a consequence, the knot is weakly localized, i.e., �l��Nt, with t=2−c�0.75. For a ring with fixed knot type,
weak localization implies the existence of a peculiar characteristic length l��Nt�. In the scaling �N� ��
�0.58� of the radius of gyration of the whole ring, this length determines a leading power law correction
which is much stronger than that found in the case of unrestricted topology. The existence of this correction is
confirmed by an analysis of extensive Monte Carlo data for the radius of gyration. The collapsed regime is
studied by introducing in the model sufficiently strong attractive interactions for nearest neighbor sites visited
by the self-avoiding polygon. In this regime knot length determinations can be based on the entropic compe-
tition between two knotted loops separated by a slip link. These measurements enable us to conclude that each
knot is delocalized �t�1�.
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I. INTRODUCTION

Various forms of topological entanglement play a funda-
mental role in determining equilibrium and dynamical prop-
erties of single chain and multichain polymeric systems
�1,2�, with relevant consequences also for biological matter.
For instance, the presence of a knot can be an obstacle to the
processes of duplication and segregation of DNA in bacteri-
als �3�. Indeed, there exist topoisomerase enzymes whose
function is precisely that of controlling the topology of cir-
cular DNA �4,5�. The knots and links which are ubiquitous in
higher molecular multichain melts and solutions can pro-
foundly affect properties of such systems as viscosity or re-
sistance to rupture �6�. Knots can even be found in the native
state of some proteins �7–10� and may play an important role
in their stabilization with respect to denaturating agents and
in their folding dynamics.

The description of the consequences of topological en-
tanglement in polymer physics poses theoretical and numeri-
cal challenges which only relatively recently started to be
faced with some success �11,12�. An interesting issue ad-
dressed in the last years is that of establishing whether knots
tend to be “spread” over the whole polymer or “localized”
within a short portion of the chain �Fig. 1�. If properly quan-
tified, the degree of localization of �prime� knots is expected
to play an important role in the discussion of both equilib-
rium and dynamical properties of knotted macromolecules.
For example, if the knot is localized to some degree in a long
ring, the logarithmic correction to the ring entropy per mono-
mer should drastically change with respect to that of the
unknotted case �13�. On the other hand, the knot could be-
have in such a way that its average “length” grows with the
tth power �0� t�1� of the total ring length N. Corrections to
scaling associated to this length should then be expected for

the long chain behavior of measurable quantities such as the
gyration radius �14�. These corrections should be detectable
as peculiar of rings with prime knot, but could not be pre-
dicted within the framework of approaches such as the field
theoretical renormalization group, which treats only the case
of “phantom” ring polymers with unrestricted topology. The
size of the knot in a DNA ring should also strongly affect the
action of topoisomerases or the mobility of the ring in gel
electrophoresis experiments �15�. Furthermore, recent ex-
periments of DNA micromanipulation by optical tweezers
have shown that it is possible to tie specific knots into the
macromolecule �16� and to observe their motion within a
viscous solution �17�. For this problem the knowledge of the
length of the entangled region is essential, since it directly
affects the knot diffusion coefficient �17�.

In spite of some early indications that prime knots in ring
polymers in good solvent are likely to be localized in small
portions of the chain �13,18�, sufficiently direct and quanti-
tative evidence of this property remained for long a major
challenge. This is mainly due to the difficulty of locating the
knot of a closed curve in a consistent way. A possible proce-
dure is that of isolating a trial open portion of the curve and
of checking whether the new ring obtained by joining its
extremes with a topologically “neutral” closure still contains

FIG. 1. On the left we see a tight knot: it is easy to say that the
knotted arc is that within the small sphere �dashed circle�. On the
right the knot is delocalized within the curve.
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the original knot or not. The knot length should then be
identified with that of the smallest portion for which the knot
remains. Such procedure relies on the notion of knotted arc
that is not well defined mathematically �19�. Indeed, since
knots are embeddings of circles �20�, in a strict mathematical
sense no open string can be knotted: continous transforma-
tions acting on such string can always bring it into an un-
tangled shape. For a general closed curve knottedness is a
global property: we can not state that a portion is knotted,
but only that the whole curve is �Fig. 2�. Nevertheless, as we
show here, when dealing with a whole sample of closed
curve configurations the notion of knot length may acquire a
physical meaning, at least in a statistical sense.

A definition of knot length may be much more easy to
give for flat knots �21�, i.e., knots in ring polymers that are
confined in two dimensions �22�. Physical examples include
polymer rings adsorbed on a plane by adhesive forces �23� or
macroscopic necklages flattened under gravity onto a vibrat-
ing plane �24�. The configurations of such adsorbed rings
would be similar to the planar projections used in knot
theory to compute topological invariants and classify knots
�20�. Under the simplifying assumption that the number of
overlaps is restricted to the minimum compatible with its
topology �for example, 3 for the trefoil knot�, the length of
the hosted flat knot can be unambiguously defined and its
statistical behavior, as a function of the number of monomers
of the ring, can be studied analytically �22� and numerically
�25�. In the good solvent regime flat knots were found to be
strongly localized. This approach has also been extended to
polymer rings that undergo collapse from the swollen �high
temperature� to the compact �low temperature� regime and it
was found that globular flat knots are delocalized �t�1�
�25–27�. However, the results on localization and delocaliza-
tion of flat knots apply to a model which is a too crude
representation of knots in three dimensions, which are the
challenge here.

In a recent paper �14� we reported a preliminary investi-
gation of the size of knots in a flexible polymer ring fluctu-
ating in equilibrium in 3D. By modeling the ring configura-
tions as self-avoiding polygons �SAPs� on the cubic lattice,
we could take fully into account excluded volume. Thanks to
the inclusion of short range attractive interactions, upon low-
ering the temperature T, the polymer ring did undergo a col-
lapse transition from a coil to a globule shape at the � point
temperature �28�.

To measure the average size of the knots in the high tem-
perature swollen regime, we followed two different methods
�14�. The first one was based on the cutting-closing strategy
already outlined above. In order to test the consistency of the

results we also adopted a completely new strategy based on
the entropic competition between two knotted loops into
which a ring can be partitioned by a slip link. If each one of
the two loops contains, e.g., a prime knot, one expects a
dominance of equilibrium configurations in which one of the
loops is entropically tightened, while the other one gains
almost the whole length of the ring. It is then tempting to
identify this form of tightening of the loop with the entropic
tightening of the knot it contains. This last tightening could
also be the same as that occurring within a singly knotted
fluctuating ring.

In Ref. �14� we gave evidence that in the swollen regime
prime knots are weakly localized with t	0.75. This result
was obtained with the two independent methods above, by
fitting the power law behavior of the average knot length as
a function of the total ring length. Similar methods were
subsequently applied in Ref. �29� to an off-lattice model of
open polyethylene chain, obtaining results for the localiza-
tion of the trefoil knot in qualitative agreement with ours.

One of the aims of the present work is to address the issue
of the consistency of the method of knot localization study
based on cutting and closing and that based on entropic com-
petition of loops more systematically, by testing other knot
types and, most important, by analyzing more globally the
probability distribution functions �PDFs� of the knot length
measured in the different cases.

Another purpose of the present work is that of investigat-
ing the issue of scaling corrections for ring polymers with
fixed topology. Recently, an attempt was made to infer the
localization properties of prime knots from the scaling cor-
rection detected in the force-extension plots of knotted poly-
mers whose extremes are subjected to a force �30�. However,
the results appeared consistent with a power law behavior of
the average knot length rather different from those we de-
tected in Ref. �14� by our direct measurement. Moreover, the
correction estimated there appeared weaker than the correc-
tion predicted by the field theoretical renormalization group
methods for a polymer with unrestricted topology.

A further result, first established in Ref. �14� is that below
the theta temperature, in the collapsed phase, knots are delo-
calized t�1. This important conclusion, further supported by
results in Ref. �29�, calls for a more systematic discussion in
view of the relevance of topological entanglement in globu-
lar polymers and biopolymers.

The plan of this paper is as follows. In the next section we
describe the model and some details of the methods of simu-
lation. The direct measure method will be introduced in Secs.
III and IV, where we will discuss also how one can discuss
the PDF of the knot length. Section V is dedicated to the
knot length evaluation based on the entropic competition be-
tween two loops. This second method is the only one safely
applicable in the low temperature collapsed regime, and we
will present the result obtained for this regime in Sec. VI. In
Sec. VII, we discuss the implications that the weak localiza-
tion of knots in good solvent has on the scaling behavior of
the mean square radius of gyration of polymer rings and on
its corrections. We close in Sec. VII with a general discus-
sion of the results.

FIG. 2. The thicker arc, once extracted from the rest of the
curve, seems to be knotted while the whole curve is not.
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II. MODEL AND SIMULATION METHODS

We model flexible ring polymers in good solvent by self-
avoiding polygons �SAPs� on the cubic lattice, i.e., closed
lattice walks whose steps can visit each edge and each vertex
of the lattice at most once �28�. Whenever necessary we
introduce in our model an attractive interaction potential
which lowers the total energy by ��0 whenever two
nearest-neighbor lattice sites are visited by non-consecutive
vertices of the SAP. This attractive interaction is sufficient to
induce a theta collapse at sufficiently low temperature T �28�.
The Hamiltonian of a configuration � with Ni��� nearest
neighbor interactions is then H���=−�Ni���.

For a fixed temperature T, configurations ����, with a
fixed knot type �, are sampled at equilibrium by using a
Monte Carlo approach based on the Berg-Foerster-
Aragao–de Carvalho–Caracciolo-Froehlich �BFACF� algo-
rithm, �31,32�. This is an algorithm which samples along a
Markov chain in the configuration space of polygons of vari-
able N and with fixed knot type. The statistical ensemble
considered is thus grand canonical, with a fugacity K as-
signed to each polygon step. We adopt this algorithm be-
cause it preserves the topology and is irreducible within each
set of configuration having the same knot type �33�. At a
given T we use a multiple Markov chain �MMC� procedure
�34� in which configurations are exchanged among en-
sembles having different step fugacities �35�. This is done in
order to improve the efficiency of the sampling, especially at
low T. In our simulations in the swollen regime the MMC’s
combines up to 10 processes at different K’s ranging from
K=0.2109 up to K=0.2130 �36�.

A relative disadvantage of the BFACF sampling method is
that correlation times are relatively long, making it difficult
to collect a sufficient statistics of uncorrelated data at large
N. To improve the statistics for high values of N in our simu-
lations of knotted SAPs, in the direct measure for the 31 and
the 41 knots we also made use of a different sampling pro-
cedure based on the two-points pivot algorithm �see Fig. 3�
�37�. The two-points pivot algorithm is known to be ergodic
in the set of all SAP’s with fixed N and quite efficient in
sampling uncorrelated configurations �37�. Unfortunately,
pivot moves can change the knot type and a check of the
topology of each sampled SAP configuration is needed. This
is done by calculating the Alexander polynomial ��z� in z
=−1 and z=−2 �20�. The sampled configurations are then
partitioned according to their knot type and the cut and join
procedure is performed as before. Note that, since it explores
the whole space of N-step SAPs, the Pivot algorithm is not
very efficient in sampling small N configurations with fixed
knot type. For example for N=1000 the probability of form-
ing a knot is 	0.004 �38,39� meaning that one should wait
on average 1000 uncorrelated unknotted configurations be-
fore seeing a knotted one. However, for N�1000 simple
prime knots start to appear with a sufficient frequency and a
reasonable statistics at fixed knot type becomes feasible.

III. DIRECT MEASURE OF THE KNOT LENGTH:
THE CUT AND JOIN PROCEDURE

For each sampled polygon with fixed prime knot type �
we measure the length l by determining the shortest possible

arc that contains the knot. The idea is rather intuitive and has
been considered in previous works on topological entangle-
ments by several authors �14,18,19,40�. The ways in which
this method can be implemented can be different and may
reveal very important in order to lower systematic errors as
we will discuss below. Our procedure works as follow �14�:
given a knotted configuration we extract open arcs of differ-
ent length by following a recursive procedure. Each arc is
then converted into a loop by joining its ends at infinity with
a suitable path �Fig. 4� and the presence of the original knot
is checked by computing, on the resulting loop, the Alex-
ander polynomial ��z� in z=−1 and z=−2 �20,41�.

Clearly, the additional path �dotted in Fig. 4� can topo-
logically interfere with the original arc �despite the procedure
tries to avoid this as much as possible� and this could be a
source of systematic errors �see Fig. 2�. This is a disadvan-
tage common to all the procedures that define a knotted arc
by closing it into a loop �18,19�. Our goal here is to find an
optimal closure procedure that minimizes such error. More-
over, as proposed in Ref. �14�, we expect that the systematic
inconsistencies of which this method suffers, should not af-
fect the asymptotic statistical characterization of localized
knots.

A rough indication of the systematic error can be given by
counting how many times the cut and join procedure finds a

FIG. 3. Two knotted �31� SAP configurations at equilibrium
sampled by a BFACF algorithm: the top configuration refers to the
swollen regime while the bottom one to the collapsed phase.
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knot in arcs extracted from unknotted rings. For our algo-
rithm this test gives a percentage of errors, of the order of
0.2%, with N=500, quite low if compared, for example, to
the error estimate in Ref. �18� for a similar system. A pos-
sible explanation is that in Ref. �18� the closure is chosen
randomly, while in our case it is deterministic and conceived
to avoid the pre-existing skein as much as possible. The pro-
cedure we follow in order to identify the shortest arc con-
taining the knot for each SAP configuration, is iterative and
realizes a progressive reduction of the length of several ini-
tial trial arcs.

IV. DATA ANALYSIS AND RESULTS

We first focus on the size of prime knots for rings at
equilibrium in the high-temperature regime. In Ref. �14� we
gave preliminary results indicating that in the swollen phase
the trefoil and the figure eight knot are weakly localized. Our
aim is to make these results more robust by considering other
prime knots. Here and in the following, brackets indicate
fixed N averages, obtained, whenever necessary, by a suit-
able binning of the data. For a fixed knot type we sampled
roughly 106 uncorrelated SAP configurations and for each
one of those we estimated the size of the hosted knot by the
procedure previously described.

In Fig. 5 we show the N dependence of the average knot
size �l� obtained in this way for different prime knots. The
plots give evidence that �l��Nt in all cases. By performing
log-log fits of the data and a finite size scaling analysis, we
obtain the t estimates reported in Table I.

These estimates give a good evidence that prime knots are
weakly localized in the swollen regime, i.e., t�1. Moreover
the overlaps of the plots for 51 and 52 seem to suggest that
knots with the same minimal crossing number have very
close average size, even for relatively small N.

The possible dependence of the exponent t on the knot
type is, however, less clear and to clarify the issue both a
better sampling at high N and a systematic analysis of finite
size corrections are needed. From Fig. 5 one can indeed no-
tice that for large N the BFCAF sampling technique starts to
deteriorate since the statistics becomes quite poor. This is
due to the difficulty of sampling properly the high N region
of the configurational space, since the BFACF algorithm has
the disadvantage of very long autocorrelation times
�31,32,37�. For the knots 31 and 41 we complemented our
BFACF determinations of �l� with data obtained from the
two-points pivot algorithm mentioned in Sec. II. The average
knot lengths obtained with this simulation method overlap
the BFCAF estimates in Fig. 5 for N	2500. The pivot data
extend up to N	3500 and are more consistent with the ex-
pected power law behavior in the high N region. One can see
a tendency of the exponent to grow with increasing number
of the minimal crossing number of the knots. However, the
statistical uncertainty is relatively large and it is legitimate to
suspect finite size corrections to be stronger for more com-
plex knots.

As far as the scaling analysis is concerned, a more solid
and detailed control should be achieved by analyzing the full

TABLE I. Estimates of the knot size exponent t by the cut and
join approach. They have been obtained by a linear fit of the log-log
plots of Fig. 5. For the 31 and the 41 knots the estimates are based
on both BFACF and pivot data.

Knot type t

31 0.67±0.05

41 0.77±0.07

51 0.80±0.07

52 0.80±0.05

71 0.85±0.08

A

B

C

D

E

F

A

B

FIG. 4. A sketch of how the closure scheme works: for a given
extracted arc with extremes A and B we compute the center of mass
C and construct two segments that go far from it �they are con-
structed on the line connecting C with A and B�. We then complete
the loop by connecting the extremes of these segments �D and F� to
a point distant from the arc �E�.
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FIG. 5. �Color online� Average knot size �l� as a function of the
total length of the polygon N for different prime knots. Filled sym-
bols correspond to BFACF data, whereas empty symbols represent
determinations obtained by the pivot algorithm. The BFACF data
have been binned in N. The dotted curve corresponds to a fit of the
form �l��ANt for the 31 with t given by the estimated value in
Table I. Note that the data for 51 and 52 are almost superimposed.
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probability distribution function �PDF� of l as a function of
N, i.e., p�l ,N�. In analogy with previous works on similar
problems �42,43� one can assume, for the PDF, the following
scaling form

p�l,N� = l−cf
 l

ND� . �1�

where the scaling function f is expected to approach rapidly
zero as soon as l�ND �D	1�. The quantity ND is a sort of
cutoff on the maximum value l can assume. We expect D
=1, because there are no reason a priori to think that there
exists some “topological cutoff” which limits the size of the
knot. Unfortunately, to look at the scaling behavior of the
PDF directly, e.g., by means of collapse plots, is a quite
difficult task that needs a huge amount of data and is not
feasible in this context. We can instead perform an analysis
based on the scaling behavior of the moments of the PDF in
Eq. �1� �44�. This method relies on the following consider-
ation: given the scaling behavior �1� for the PDF, its qth
moment �q�0� should obey the asymptotic law

�lq� =� lqp�l,N�dl � NDq+D�1−c�  Nt�q� �2�

and the two parameters D and c can be deduced by fitting the
estimated exponents t�q� against the order q �45�. In Fig. 6
the estimated values of the exponent t are shown as a func-
tion of q for the prime knots 31 and 41. As usual in this kind
of analysis �44�, the plots of t�q� show deviations from lin-
earity at relatively low q, due to finite N scaling correction
effects. However, an optimal window of linearity can in gen-
eral be identified for values of q which are somewhat larger,
but not so large to cause problems with the sampling of the
corresponding moments due to poor statistics. It makes sense
then to rely to extrapolations of the linear behavior within
these windows for a determination of both D and c. Indeed,
from the slope and the intercept of these straight fitting lines

we obtain the estimates given in Table II for a number of
different prime knots.

For 31 and 41 the estimates have been obtained by adding
to the BFACF data those obtained with the pivot algorithm.
We notice that D is reasonably close to the value we ex-
pected �D=1� especially for the 31 case. The discrepancy
between the expected value and the measured one gets larger
as the difficulty of sampling at large enough N increases.
This sampling gets poorer with increasing knot complexity.
Indeed the most reliable estimate of D is that obtained for the
trefoil knot, for which the sampling is the best. Assuming for
this knot D=1 and c=1.25 we would obtain t	0.75. The
estimates are all consistent with the expectation that prime
knots are weakly localized in polymer rings in the swollen
phase �14�. Moreover, compared with the estimates of Table
I, those of Table II vary considerably less with knot type. The
results suggest that the knot length growth exponent t= t�1�
for prime knots could be independent on the knot type.

V. KNOT LENGTH ESTIMATES BY ENTROPIC
COMPETITION

As remarked in the previous section, measures of the knot
length based on the cut and join procedure lead to systematic
errors that are somehow uncontrolled. These errors are
mainly due to the topological interference between the cho-
sen arc and the polygonal used to join the ends of the arc at
infinity �Fig. 4�. This problem becomes much more serious
in the case of collapsed ring polymers since the chance to
find the ends of the arc deep inside the globule formed by the
arc itself is very high. To overcome this problem, a com-
pletely different procedure has been recently introduced in
Ref. �14�. The idea consists in partitioning a SAP into two
�mutually avoiding� loops by a narrow slip-link that does not
allow a complete migration of one loop, or of its knot, into
the other loop. The whole topology of such structure can be
characterized by the knot types �1 and �2, respectively, of the

TABLE II. Results from the analysis of moments of the knot
size PDF for the cut and join approach.

Knot type D c t

31 0.958±0.004 1.25±0.04 0.72±0.03

41 0.934±0.004 1.18±0.04 0.77±0.04

51 0.918±0.002 1.14±0.03 0.79±0.03

52 0.863±0.003 1.11±0.04 0.76±0.04

71 0.864±0.004 1.06±0.09 0.81±0.09

0 0.5 1 1.5 2
q
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0.5

1

1.5

2
t(

q)

3
1

4
1

FIG. 6. �Color online� Values of the exponents t�q� as a function
of the order q of the moment for the knots 31 and 41. The lines are
best fits for 1.3�q�2. There are deviations from the linear depen-
dence for smaller values of q due to finite size effects.

FIG. 7. Sketch of a trefoil knot forced to its typical length by the
competition of another knot.
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first and the second loop, and by the linking state between
the two loops. On this model a Monte Carlo dynamics, based
again on the BFACF algorithm, is then implemented in such
a way that the overall topology of the configuration is con-
served. In our simulations we considered only cases in which
the two loops are unlinked. Let us start considering the most
symmetric situation �1=�2. At equilibrium, since the number
of configurations for the whole SAP is maximum when one
of the loops is much longer than the other one, most configu-
rations break the symmetry between the two loops showing a
marked length unbalance. Typically, in one of the two loops
the knot has a very large share of the whole SAP at its dis-
posal, while the other loop is just long enough to host its
knot. This effect is very pronounced if both loops are unknot-
ted ��1=�2=��. In this case the smaller loop is practically
always confined to the minimal length allowed by the model
�Fig. 8�. A similar behavior has been also found �42� for a
model of independent loops, i.e., loops for which the mutual
avoidance is neglected.

Consider now the situation in which each loop hosts the
same prime knot ��1=�2����. Here we identify the knot
size l with the length of the smaller loop. With a little abuse
of notation we are not going to distinguish between the
length of the knot and the length of the shorter loop, as we
will eventually argue that their scaling behaviors are the
same. So, we will refer to both of them with the symbol l.
Figure 9 shows the mean value of l as a function of the total
size N for the cases �=31, 41, 51, and 71. Unlike in the
unknotted case, the size l is not fixed to the minimum value
allowed by the knot type considered �for example, 23 for 31
�46��, but fluctuates and grows according to

�l� � Nt. �3�

A log-log fit of the data gives for t estimates that are in
agreement with those obtained by the direct measure of the
knot length l based on the cut and join method. This corrobo-
rates the preliminary results in Ref. �14�. The analysis also
confirms that the entropic competition approach is a valu-

able, alternative, tool for estimating the scaling behavior of
the knot size. Note that, unlike the cut and join approach, the
entropic competition method allows us to estimate also the
average size of composite knots when they are tightened
close to each other within a tight loop. In Fig. 9, for example,
we report the result for the case �31#31 ,31#31� �48�. It is
interesting to notice that for this and other composite knots
the N dependence of �l� is similar to that observed for the
prime knots considered. Thus, when the components of a
composite knot are maximally localized, the exponent t does
not seem to differ much from that valid for prime knot lo-
calization.

Why does the entropic competition method work so well?
We learned from the cut and join approach that a knot hosted
in a loop is weakly localized, i.e., its length grows as a power
law of N with exponent t�1. This means that the loop con-
figuration in which the knot has strictly its minimal length
�independent on N� is not the only one favored entropically.
In a system of two equally knotted loops one of the loops
will always grow as N for the same entropic reasons we
discussed in the case of two unknotted loops. Now, however,
the smaller loop is knotted and since the knot tends to be
weakly localized, it forces the whole loop to behave in the
same way. Since the two loops host the same knot type, the
situation is perfectly symmetric and the system chooses
spontaneously which of the two loops to make longer. If, on
the other hand, we break explicitly the loop symmetry by
inserting different knots in the two loops ��1��2� the system
at equilibrium tends to have as the smaller loop the one
hosting the simpler of the two knots. The entropic argument
described above for the smaller loop is still valid here and we
do not expect changes in the scaling behavior of �l�. This is
indeed the case as one can see from Fig. 10, which shows the
N dependence of �l� in the cases in which the simplest knot is
the trefoil ��1=31�. In this case the average of l reported has
been based on sampling the length of the loop with knot 31
only in configuration in which the same loop is the smaller
one. One can notice that, as the complexity of �2 increases,
the minimal length lmin to host such knot increases and, for

0 500 1000 1500

N
0

200

400

600

800
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l>

FIG. 8. Competition between unknotted loops: the circles rep-
resent the length of the longer loop while the triangles the length of
the shorter loop. While the former delocalizes, the latter seems to be
forced to its minimal length �four edges�.
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FIG. 9. �Color online� Plot of �l� for the shorter loop as a func-
tion of N. Different symbols correspond to different knots � hosted
by the second loop.
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fixed N, there would be less edges at disposal of the knot 31.
In other words the increase of the knot complexity in the
longer loop corresponds to an increase of the “entropic
force” it applies on the smaller loop. This action, however,
affects only the amplitude of the scaling behavior of �l�,
keeping the exponent t unaltered as one can guess from the
slopes of the log-log plots in Fig. 9.

As in the case of the direct measure, robust estimates of t
can be obtained by performing the analysis of the moments if
the probability distribution function p�l ,N�, where l is the
length of the shorter loop in the case of competition between
two equal prime knots, or the length of the loop hosting the
simpler knot �when it is also the shorter� in the case of two
different competing knots. The obtained estimates for the
exponents of p are reported in Table III. As one can see, they
are compatible with those presented in Table II, obtained
from the cut and join method.

VI. KNOT SIZE IN COLLAPSED POLYGONS

If in the SAP model we introduce an attractive interaction
between nonconsecutive nearest-neighbor monomers, we
mimic the effect of a bad solvent. In this case, upon lowering
the temperature below T
, the SAP undergoes a collapse

transition �28� from a swollen to a collapsed phase. It is
interesting to see how the degree of localization of knots
depends on the quality of the solvent. We are interested in
determining how the size of the knot l behaves for highly
condensed polygons. Previous studies on flat knots �25,27�
showed that in the compact regime they delocalize. A similar
delocalization was first predicted in Ref. �14� for real 3d
knots. Unfortunately an estimate of �l� obtained by a cut and
join method would not be reliable for compact configurations
since the cut and close procedure would alter with high prob-
ability the topology of the chosen arc �47,49�.

To the contrary, the strategy based on entropic competi-
tion does not involve alterations of the topology and should
work also for very dense configurations. To obtain compact
configurations we have simulated the two loop model at T
	0.53T
, i.e., well inside the collapsed phase. Unfortu-
nately, to sample SAP’s below the 
 point is in general a

TABLE III. Estimates, with the method of moments, of the knot
size exponent t obtained by looking at the average size of the small-
est loop of the two loops model.

��1 ,�2� D c t

31, 31 0.939±0.002 1.28±0.03 0.68±0.02

31#31, 31 0.916±0.002 1.30±0.03 0.64±0.02

31#31#31, 31 0.940±0.005 1.33±0.04 0.63±0.03

41, 41 0.892±0.006 1.20±0.07 0.82±0.07

51, 51 0.939±0.002 1.14±0.05 0.81±0.04

71, 71 0.937±0.004 1.13±0.08 0.82±0.07

31#31, 31#31 0.940±0.002 1.07±0.06 0.87±0.06
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FIG. 10. �Color online� Plot of the mean length �l� of the short-
est loop �hosting 31� as a function of N. Different symbols corre-
spond to different topologies of the longer loop.

0 250 500 750 1000

N
0

100

200

300

400

<
l>

4
1

low T

3
1

low T

3
1

high T

FIG. 11. �Color online� N dependence of the average size of the
shortest loop �l� for the two loops model. The top curves corre-
spond, respectively, to the �41 ,41� �circles� and to the �31 ,31�
�squares� topologies for T�T
. The bottom curve has been intro-
duced for comparison and corresponds to the case T� �T
 for the
topology �31 ,31�.
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FIG. 12. Exponent t�q� in the competition between two trefoils
in the compact phase. The data for the figure eight knots overlap
those for trefoils, and are not included.
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difficult task to achieve �34�. The situation is even more
delicate for grand canonical algorithms �such as the BFACF�
since, at T�T�, as the critical edge fugacity is approached
from below, the grand-canonical average number of SAP
edges undergoes a first order infinite jump from a finite
value, rather than growing continuously to infinity as in the
T�T
 case. In spite of this difficulty, we have been able to
sample 	106 uncorrelated configurations for each topology
considered and for N up to 	700. In Fig. 11 the N depen-
dence of �l� is reported for the topologies �31 ,31� and
�41 ,41�. For comparison the data coming from the swollen
regime are also reported. The difference between the two
regimes is evident and a linear behavior for the compact case
can be easily guessed. Indeed, a simple linear fit of such data
gives a good correlation coefficient �r=0.9993� and a slope
A31

=0.34.
An analysis of the moments of p�l ,N� confirms the con-

clusion that the knots are delocalized in the globular phase.
Indeed, e.g., in the case of the 31 knot, we obtain D�0.98
and c�1.1, from plots of t�q� �Fig. 12� and this shows that
the growth of the smaller loop is linear in the total length. A
similar analysis for the figure eight case gives D�0.98 and
c�1.1, again consistent with the expected delocalization �t
�1�.

VII. THE MEAN RADIUS OF POLYGONS WITH FIXED
KNOT TYPE: CORRECTION TO SCALING

In this section we show how the weak localization prop-
erty of knots in the swollen regime can have relevant conse-
quences for the scaling behavior of the mean squared radius
of gyration of SAP’s with fixed knot type. According to the
modern theory of critical phenomena based on the renormal-
ization group �RG�, its averaged large N behavior for a ring
polymer is expected to be

�Rg
2�N � AN2��1 + BN−� + o�N−��� �4�

where the exponents � and � are expected to be universal in
the good solvent regime. They have been estimated as �
=0.5882±0.0010 and �=0.478±0.010 using field theoretic

RG techniques �Ref. �50�, see also Ref. �51��, consistent with
the best available numerical estimates for lattice self-
avoiding walks as given by Li et al. �52�: �
=0.5877±0.0006, �=0.56±0.09.

These results are valid for ring polymers with unrestricted
topology, which are the only ones that can be treated on the
basis of field theoretical RG methods. For a ring polymer
with a fixed prime knot �, it is reasonable to expect an
asymptotic form of �Rg

2��,N
1/2 similar to that in Eq. �4�, but

possibly with different, �-dependent amplitudes. Since the �
exponent is determined by the fractal structure of the poly-
mer conformations, we do not expect it to change as a con-
sequence of a global restriction to a specific knot topology.
To the contrary, for � we expect the possibility of a deviation
from the value reported in Eq. �4�. Indeed, for the case of
prime knots, we have established above a weak localization
in the good solvent regime. This weak localization implies
the existence of a characteristic length �l���Nt�, diverging
with a power of N which is subleading with respect to N�

�t�1�. This gives the possibility of a scaling correction ex-
ponent ��=1− t, as we argue below.

In analogy with Eq. �4� we can write

�Rg
2��,N = A�N

2��1 + B�N
−�� + o�N−���� �5�

for the asymptotic behavior of the mean square radius of
gyration of a ring with fixed prime knot � in the swollen
regime. In this expression we allow for a dependence of A,
B, and � on the type of knot. However, as far as A is con-
cerned, we checked that the dependence on � is very weak.

For SAP’s with fixed knot type �, let �l�� indicate the
average size of the hosted knots. In general, if �l��=o�N�, as
N→�, �Rg

2��,N should scale as the size of an unknotted loop
with length N− �l��, i.e.,

�Rg
2��,N � �Rg

2��,N−�l��. �6�

Our estimates of �l�� suggest �l���a�N
t with t	0.75,

roughly � independent. By plugging this behavior in Eqs. �5�
and �6� we obtain

0 0.1 0.2 0.3 0.4 0.5

N
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0.05

0.1

0.15
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g2 /N
2ν
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4

1

3
1

FIG. 13. �Color online� Plot of Rg
2 /N2� against

N−�� for the unknot ���, 31 and 41. ��=0.25 is
considered.

MARCONE et al. PHYSICAL REVIEW E 75, 041105 �2007�

041105-8



�Rg
2��,N = A�N2��1 + B�N−�� − C�N

t−1 + ¯ � , �7�

where C�=�a�.
Equation �7� implies that either ��, or �t−1� is the expo-

nent describing the scaling correction for a ring with fixed
prime knot type �, independent of �. Below we indicate by
�� this correction exponent, and it will turn out ��=1− t or
��=��, if 1− t��� or ���1− t, respectively. In any case,
the fact that 1− t	0.25 tells us that �� can not coincide with
�	0.5 of the phantom polymer.

Below we provide evidence that indeed ��=1− t�0.25 is
quite plausible. At the same time one should conclude that,
either B�=0, or ���1− t.

In Ref. �13�, the issue of the scaling of �Rg
2�� was ad-

dressed without introducing the concept that knot localiza-
tion could introduce a scaling correction exponent. A huge
collection of data was analyzed by assuming also for the
restricted knot topology the same correction exponent �
	0.5 predicted for the unrestricted case. In this way a rather
convincing confirmation of the independence of � and A of �
was obtained. To test the presence of a correction exponent
�1− t� we have replotted the data of Ref. �13�, for �Rg

2�� /N2�

assuming the scaling form �7� �see Fig. 13� with a leading
correction �N−�� and with ��0588. Assuming a ��	1− t
�0.5, the curves appear now more straight, as they should

asymptotically, and extrapolate more clearly to a unique in-
tercept with the ordinate axis, which estimates the common,
�-independent, amplitude in Eq. �7�. The fact that for the
unknot the plot is almost horizontal suggest that either B�
=0, or �� is sensibly larger than 1− t. This becomes more
clear if one plots, on the same figure, the N dependence of
�Rg

2�31,N /N2� by using different correction terms. As one can
see the data rescaled with ��=1− t	0.25 are clearly more
on a straight line than those rescaled with �=0.5 or with a
much stronger, hypothetical, correction �=0.1.

In Table IV are reported the estimates of the amplitudes
A� corresponding to the unknot, and to the 31 and 41 knots,
extrapolated from plots similar to those in Fig. 14, in the
cases ��=0.10, ��=0.25, and ��=0.5. The fact that for ��
=0.25 there is an optimal agreement among the three values
is not inconsistent with our conclusions on ��.

VIII. DISCUSSION

In this work we addressed the problem of localization of
knots in flexible ring polymers modeled by SAPs on cubic
lattice. In the swollen regime we showed that a statistical
method of prime knot length determination based on isolat-
ing different portions of the SAP as candidates to host the
knot is consistent with an alternative criterion, based on the
entropic competition between two knotted loops within the
same ring. By a systematic analysis of the moments of the
knot length PDF of different knots, we gave strong indication
that the localization of a prime knot is characterized by an
exponent t	0.75 describing how the average length grows
as a function of N. The exponent t could be universal for
different prime knots, or even for composite knots whose
components are tightened to remain close to each other in the
same loop.

We have shown that the weak localization of a prime knot
in a swollen ring determines a peculiar scaling correction
exponent ��=1− t�0.25 for the asymptotic scaling of the

TABLE IV. Estimates of the amplitude A��� in Eq. �4� for
different knot type and with ����=0.588. Different estimates cor-
respond to different value of the correction to scaling exponent �.
For the unknot the values �=1− t and �=0.5 coincide.

� Unknot 31 41

0.1 0.101±0.004 0.172±0.004 0.152±0.003

1− t 0.102±0.004 0.110±0.004 0.112±0.004

0.5 0.102±0.004 0.108±0.005 0.095±0.005
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R
g2 /N
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N
-∆

∆=0.25

0.4 0.5 0.6 0.7 0.8

∆=0.1

FIG. 14. �Color online� Plot of
Rg

2 /N2� versus N−� for three dif-
ferent values of � for 31. From
left to right: the standard value for
� used for ensembles with unre-
stricted topology ��=0.5�, the
correction coming from our data
for polymers with a prime knot in
it ��=0.25�, and then a greater
correction ��=0.1�. As one can
notice, the best correction seems
to be given by the intermediate
value between the three proposed.
These data are the ones proposed
in Fig. 7 of Ref. �13�.
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radius of gyration. This exponent implies a stronger correc-
tion compared to that occurring for phantom ring polymers
with unrestricted knot type. We think that recent works in the
literature, addressing subtle issues concerning the scaling of
polymer rings with fixed topology �53�, could sharpen their
conclusions by taking into account in the numerical analysis
the different scaling correction identified here.

A remarkable advantage of the method of entropic com-
petition between knotted loops is the possibility of dealing
with the collapsed regime without risking to suffer too strong

systematic errors in the determination of the knot length.
Thanks to a systematic analysis of data we could conclude
that both prime and composite knots fully delocalize in the
globular phase, confirming a previous prediction by the au-
thors of the present work �14�.
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